Search results

Search for "thermal expansion" in Full Text gives 57 result(s) in Beilstein Journal of Nanotechnology.

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • thermal expansion of Ag NWs and a substrate during heat treatment from room temperature to 673.15 K were simulated by FEM in Comsol Multiphysics 5.6. The structural configuration involved a pentagonal Ag NW positioned above a rectangular hole on an Si substrate. The NW was securely affixed to the
  • . Firstly, Ag has almost an order of magnitude higher thermal expansion coefficient compared to that of Si (18.9 vs 2.8 × 10−6 m/(m·°C)) [45]. Secondly, from nanomanipulation experiments previously performed on similar Ag NWs [8], we know that the strength of the contact between Ag NWs and Si substrate can
  • exceed the ultimate strength of Ag NWs. Based on these facts, we expect that the thermal expansion of Ag NWs will compete with friction forces between the NWs and Si substrate, causing significant mechanical stresses inside the NWs, especially at the interface between the two materials. This may serve as
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • flexibility, the NCG film was grown on both sides of the glass substrate. There are three reasons for that. First, the negative thermal expansion coefficient of NCG prevents the release of stress initially present in the glass [25]. Second, the film protects the glass from any corrosion from water if the
PDF
Album
Full Research Paper
Published 08 Apr 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • , inducing thermal expansion or contraction of the instrument’s components [5]. As a consequence, sample and probe experience an unintended movement relative to each other, that is, the thermal drift. This drift is not included in the measurement data, so the recorded SPM images appear distorted [5][6]. An
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • Sciences, Beijing, 100190, China 10.3762/bjnano.14.55 Abstract In situ X-ray diffraction indicates that the structural phase transition from h-MoO3 to α-MoO3 is a first-order transition with a phase transition temperature range of 378.5–443.1 °C. The linear coefficients of thermal expansion of h-MoO3 are
  • octahedron layers in the ⟨100⟩α direction. The octahedron layers are bonded by van der Waals interactions in the ⟨010⟩α direction, crystalizing into the α-MoO3 structure. Keywords: microstrain; molybdenum oxide; phase transition; thermal expansion; Introduction Molybdenum exhibits oxidation states ranging
  • MoO6 octahedra tunnel. Before the phase transition, the release of the water molecules causes the octahedra chains to shrink and the octahedra tunnel to expand, which results in a strongly anisotropic thermal expansion. When the phase transition occurs, the anomalous expansion of the MoO6 octahedra
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • distribution is investigated by means of scanning Joule expansion microscopy (SJEM) [32]. The technique provides a method to obtain the relative temperature distribution at the nanoscale starting from the measurement of induced thermal expansion, which can be directly mapped in a standard AFM-based image using
  • temperature distribution surrounding the active element through SJEM mapping the thermal expansion of the metallic surface using an AFM. Both methods are further reinforced through the use of three-dimensional simulations. A description of the experimental methods of both investigations is detailed below as
  • plasmonic response. This heating also results in thermal expansion of the element. This expansion will result in deflection of an AFM cantilever scanning the surface. If a sinusoidal voltage is applied to an electrically conducting sample, such as the active plasmonic element discussed here, the resulting
PDF
Album
Full Research Paper
Published 16 Jan 2023

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • (Figure 3 f), due to the non-uniform thermal expansion during the sintering at higher temperature. Vickers microhardness and deformation peculiarities Figure 5 shows the microhardness (H) as function of the load (P) applied to the Vickers indenter for HAP- and HAG-based composites. The obtained results
PDF
Full Research Paper
Published 12 Dec 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • temperature and, thus, scales with their molar area and thermal expansion coefficient. The surface tension of the eutectic Ga–In–Sn liquid at the melting point has been reported to = 587 mN/m. Since the surface tension originates from the imbalanced bonding of atoms at the liquid–vapor interface [29], it
PDF
Album
Full Research Paper
Published 23 Aug 2022

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • of temperature as well as pressure on TD parameters, such as the Grüneisen parameter (γ), Debye temperature (θD), thermal expansion coefficient (α), heat capacity (CV), and volume. We employed the quasi-harmonic Debye model [60][61] to explore the TD properties of the π-SnSe alloy. We obtained the TD
  • properties at some fixed pressure range of 0–40 GPa along with the temperature variation of 0–800 K. The thermal expansion coefficient is an important parameter used to predict the TD equation of state and has experimental and theoretical significance. The temperature and pressure variation of the thermal
  • expansion coefficient is presented in Figure 5a along with the pressure. The thermal expansion coefficient reveals the information about the amplitude regarding atomic lattice vibration which demonstrates how the alloy dimension changes when the external temperature is applied. It can be seen that by
PDF
Album
Full Research Paper
Published 05 Oct 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • fragile molecules that are impossible to safely deposit onto surfaces with traditional deposition techniques. So far, using HV-ESD, numerous molecular species with potential applications in biology and photovoltaics, or with magnetic or thermal expansion properties have been deposited on a variety of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • tension in the device is reduced because graphene has a negative thermal expansion coefficient [53], and a down-shift in resonance frequency is observed. The mode frequency can be shifted up by 100 percent through increasing the laser power from 15 to 150 μW. The large bandwidth in combination with the
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • structural or a chemical change, a complementary AFM-IR method was used. This hybrid setup is comprised of an AFM and a tunable pulsed laser source focused on the sample volume underneath the AFM tip. The absorption at distinct wavelengths is measured by detecting the thermal expansion of the material by the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • , and self-pealing from a substrate [4]. Negative dynamic compressibility occurs in several 2D materials due to the dynamical wrinkling of layers [8]. Also, 2D materials folded in 3D origami-like structures [7][9][10] can, in principle, exhibit a tunable negative thermal expansion coefficient [11]. In
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • distance) in all deposition experiments. This allows for some thermal expansion of the needle when the GIS is heated. After installing each precursor-filled GIS, its crucible temperature was determined. The desired temperature should generate a pressure rise that is sufficient for deposition without
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • , which induces a shift in the phonon energies. This behavior of the Raman peak frequencies with T is seen in many materials as T changes, from which a thermal expansion coefficient can be deduced [52][53]. Similar to the P dependence, here we termed the change in frequency of the peaks with T as ΔωT. As
  • [26] is invoked as expressed by Equation 8, where ΔωE is the Raman shift change induced by lattice thermal expansion, which leads to a red-shift as discussed earlier. Additionally, the ΔωA is the Raman shift attributed to anharmonic effects of the three- and four-phonon process. A light scattering
  • , respectively. The nonlinear perturbations in the mode mainly originate from the anharmonic effect of three-phonon processes (Figure 3c), whereas for the A1g mode, there is a contribution from the thermal expansion effect as well as in the high-T regime given the out-of-plane A1g vibrations that are less
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • thermal expansion (CTE) of the polymer template is much higher than the CTE of the dielectric layer. Here, a novel dry-blending method is described in which SiO2 nanoparticles are filled into a grooved silicon template, followed by permeation of polydimethylsiloxane (PDMS) into the SiO2 nanoparticle gaps
  • achieved the alignment of OTFT electrodes using the composite template. Keywords: coefficient of thermal expansion; dry blending; organic thin-film transistors (OTFTs); OTFT electrodes; PDMS/SiO2 composite template; Introduction Organic thin-film transistors (OTFTs) provide a platform to construct next
  • aligned [7]. However, the polymer template has a high coefficient of thermal expansion (CTE), resulting in alignment deviations of the OTFT electrodes [8][9]. Currently, one of the measures to reduce the CTE of polymer templates is wet blending, in which the low-CTE nanomaterial is directly incorporated
PDF
Album
Full Research Paper
Published 20 Apr 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • structures [51][52][53][54]. Key properties of glassy carbon materials, such as thermal conductivity, chemical resistance, hardness, density, and coefficient of thermal expansion are closely related to the carbon microstructure and the porosity. Resin-based carbon materials are known to possess a substantial
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • interface traps (known as Pb-type defects). These interface traps produce scattering centers that can affect the mobility of charge carriers, thus altering the transport properties [11]. Moreover, sharp interfaces with an abrupt change in the dielectric constant or thermal expansion coefficients give rise
  • the bandgap (Figure 7d). Additionally, thermal expansion of SiGe/SiO2 and lattice mismatch between Si and Ge (4.2% [31][56]) add to the development of strain in structure and should be taken into account [39]. From the above discussion, it can be summarized that the annealing temperature does affect
PDF
Album
Full Research Paper
Published 17 Sep 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • the optical response of the film. Other causes of the local changes of the optical response such as temperature-induced thickness and refractive index change of the substrate can also be neglected. The thermal expansion coefficient of silicon oxide (0.24 × 10−6 K−1) and its thermo-optic coefficient dn
  • /dT (1.29 × 10−5 K−1) [29][30] lead to statistically insignificant effects on the optical response when the sample temperature is increased from room temperature to 135 °C. A similar behavior is expected for the polymer matrix with values of ca. 1 × 10−4 K−1 for the linear thermal expansion
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

  • Idan Levy,
  • Eyal Merary Wormser,
  • Maxim Varenik,
  • Matat Buzaglo,
  • Roey Nadiv and
  • Oren Regev

Beilstein J. Nanotechnol. 2019, 10, 95–104, doi:10.3762/bjnano.10.9

Graphical Abstract
  • a result of the cycling between high and low working temperatures that is typical in electronic devices [2]. In solid TIMs, delamination, which can occur due to differences in thermal expansion between the substrate and the TIM, will introduce thermally insulating air voids into the interface. In
  • liquid or paste-like TIMs, differences in thermal expansion between the hot and cold surfaces could result in the TIM leaking out of the interface, thus increasing the contact resistance. These malfunctions in the performance of TIMs could stem from their high viscosity values during application on
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • of the thermal expansion coefficients and/or directional enthalpy (or entropy) changes, as shown in [83]. Furthermore, crystallinity is also an important parameter that can influence the domain orientation. As reported by Register and co-workers [84], there are three different levels of orientation
PDF
Album
Review
Published 29 Aug 2018

Surface energy of nanoparticles – influence of particle size and structure

  • Dieter Vollath,
  • Franz Dieter Fischer and
  • David Holec

Beilstein J. Nanotechnol. 2018, 9, 2265–2276, doi:10.3762/bjnano.9.211

Graphical Abstract
  • temperature (similar to the thermal expansion), however, this is unlikely to have any significant effect (and is expected to be marginal in comparison to other simplifications). Finally, no significant influence of the particle shape is expected as its origin (i.e., the spatial extent of the electronic cloud
PDF
Album
Review
Published 23 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
PDF
Album
Review
Published 21 Aug 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • light-induced perturbation and thermal relaxation. In addition, by monitoring the sample temperature and analyzing the temporal evolution of the height change probed by AFM they were able to rule out possible contributions from the thermal expansion of the sample (we refer the reader to [16] and the
  • originate from a thermal expansion effect. Note here that the HOPG substrate displays a thermal expansion coefficient [22] in the out-of-plane direction close to that of the MAPbBr3 crystal [23] and that both samples are relatively similar in terms of size (0.5 mm thick for the HOPG vs ≈1 mm for the MAPbBr3
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • observed ESM amplitude signal. Electrostatic interactions are discussed to be an important additional parameter that can influence ESM experiments [28][30][31] and will be the subject of future research. Additionally, LATP is known to have a strong anisotropic thermal expansion [3]. LTP, which has the same
PDF
Album
Full Research Paper
Published 28 May 2018

The effect of atmospheric doping on pressure-dependent Raman scattering in supported graphene

  • Egor A. Kolesov,
  • Mikhail S. Tivanov,
  • Olga V. Korolik,
  • Olesya O. Kapitanova,
  • Xiao Fu,
  • Hak Dong Cho,
  • Tae Won Kang and
  • Gennady N Panin

Beilstein J. Nanotechnol. 2018, 9, 704–710, doi:10.3762/bjnano.9.65

Graphical Abstract
  • expression for compressibility-induced changes, while strain-related changes can be treated in a similar way to the thermal expansion description for supported graphene [7][8], where the strain is caused by a difference of thermal expansion coefficients for graphene and the substrate. Besides, monomers and
  • pressure derivative. In the present study, β0 and β' values of 1250 GPa and 1 were used, respectively [17]. The strain-induced shift, by analogy with thermal expansion strain [7][8][18], can be written as: where is a biaxial strain rate (in our calculations we used the values of −58 and −144 cm−1/% for G
PDF
Album
Full Research Paper
Published 22 Feb 2018
Other Beilstein-Institut Open Science Activities